Giáo án Giải tích Lớp 12 - Chương I: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Tiết 10, Bài 4: Đường tiệm cận

docx 2 trang phuong 09/10/2023 880
Bạn đang xem tài liệu "Giáo án Giải tích Lớp 12 - Chương I: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Tiết 10, Bài 4: Đường tiệm cận", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

Tóm tắt nội dung tài liệu: Giáo án Giải tích Lớp 12 - Chương I: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Tiết 10, Bài 4: Đường tiệm cận

Giáo án Giải tích Lớp 12 - Chương I: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Tiết 10, Bài 4: Đường tiệm cận
Ngày soạn: 24/08/2015	Chương I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT
VÀ VẼ ĐỒ THỊ HÀM SỐ
Tiết dạy:	10	Bài 4: ĐƯỜNG TIỆM CẬN
MỤC TIấU:
Kiến thức:
Biết khỏi niệm đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số.
Kĩ năng:
Tỡm được đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số.
Củng cố cỏch tỡm giới hạn, giới hạn một bờn của hàm số.
Thỏi độ:
Rốn luyện tớnh cẩn thận, chớnh xỏc. Tư duy cỏc vấn đề toỏn học một cỏch lụgic và hệ thống.
CHUẨN BỊ:
Giỏo viờn: Giỏo ỏn. Hỡnh vẽ minh hoạ.
Học sinh: SGK, vở ghi. ễn tập cỏch tớnh giới hạn của hàm số.
HOẠT ĐỘNG DẠY HỌC:
Ổn định tổ chức: Kiểm tra sĩ số lớp.
Kiểm tra bài cũ: (5')
H. Cho hàm số
y = 2 - x . Tớnh cỏc giới hạn:
x -1
lim
xđ-Ơ
y, lim y ?
xđ+Ơ
Đ. lim
xđ-Ơ
y = -1 ,
lim
xđ+Ơ
y = -1 .
Giảng bài mới:
TL
Hoạt động của Giỏo viờn
Hoạt động của Học sinh
Nội dung
15'
Hoạt động 1: Tỡm hiểu khỏi niệm đường tiệm cận ngang của đồ thị hàm số
Dẫn dắt từ VD để hỡnh thành
Đ1. d(M, D) = y +1
Đ2. dần tới 0 khi x đ +∞.
I.	ĐƯỜNG	TIỆM	CẬN
khỏi niệm đường tiệm cận
NGANG
ngang.
1. Định nghĩa
VD: Cho hàm số y = 2 - x
x -1
(C). Nhận xột khoảng cỏch từ điểm M(x; y) ẻ (C) đến đường thẳng D: y = –1 khi x đ ±∞.
H1. Tớnh khoảng cỏch từ M đến đường thẳng D ?
Cho hàm số y = f(x) xỏc định
trờn một khoảng vụ hạn. Đường thẳng y = y0 là tiệm cận ngang của đồ thị hàm số y
= f(x) nếu ớt nhất một trong cỏc điều kiện sau được thoả món:
lim f (x) = y0 ,
xđ+Ơ
H2. Nhận xột khoảng cỏch đú khi x đ +∞ ?
lim f (x) = y0
xđ-Ơ
GV giới thiệu khỏi niệm đường tiệm cận ngang.
Chỳ ý: Nếu
lim f (x) = lim f (x) = y0
xđ+Ơ	xđ-Ơ
thỡ ta viết chung
lim f (x) = y0
xđ±Ơ
20'
Hoạt động 2: Tỡm hiểu cỏch tỡm tiệm cận ngang của đồ thị hàm số
Cho HS nhận xột cỏch tỡm TCN .
Cỏc nhúm thảo luận và trỡnh bày.
2. Cỏch tỡm tiệm cận ngang
Nếu tớnh được	lim f (x) = y0
xđ+Ơ
hoặc lim f (x) = y0 thỡ đường
xđ-Ơ
H1. Tỡm tiệm cận ngang ?
Đ1.
thẳng y = y0 là TCN của đồ thị hàm số y = f(x).
VD1: Tỡm tiệm cận ngang cuẩ đồ thị hàm số:
y = 2x -1
x +1
y = x -1
x2 +1
x2 - 3x + 2
y =
x2 + x +1
y =	1
x + 7
VD2: Tỡm tiệm cận ngang cuẩ đồ thị hàm số:
y =	x -1
x2 - 3x
y = x + 3
2x -1
x2 - 3x + 2
y =
x2 - 3x + 5
y =	x
x + 7
a) TCN: y = 2
b) TCN: y = 0
c) TCN: y = 1
d) TCN: y = 0
H2. Tỡm tiệm cận ngang ?
Đ2.
a) TCN: y = 0
b) TCN: y = 1
2
c) TCN: y = 1
d) TCN: y = 1
3'
Hoạt động 3: Củng cố
Nhấn mạnh:
– Cỏch tỡm tiệm cận ngang của đồ thị hàm số.
BÀI TẬP VỀ NHÀ:
Bài 1, 2 SGK.
Đọc tiếp bài "Đường tiệm cận".
RÚT KINH NGHIỆM, BỔ SUNG:
.........................................................................................................................................................
.........................................................................................................................................................
.........................................................................................................................................................

File đính kèm:

  • docxgiao_an_giai_tich_lop_12_chuong_i_ung_dung_dao_ham_de_khao_s.docx